Abstract

Dairy production systems display a wide range of greenhouse gas (GHG) emission characteristics influenced by factors like geographical location, farm size, herd composition, milk yield, management practices, and existing infrastructure.Effective national GHG mitigation plans for the dairy industry should incorporate strategies that account for the diversity within this system. This paper aims to introduce a multi-scale framework to assess the GHG mitigation potential within the Israeli dairy system. It begins by analyzing the GHG intensity per unit of milk produced by a representative sample of 145 farms (20 % of the national dairy farms). It then extrapolates the data to the regional and national scales. The research reveals an average carbon footprint of 1.18 (ranging from 0.8 to 1.64) kg CO2e per kilogram of milk (FPCM) over the life cycle up to the farm gate. Upon scaling up, the study estimates the annual carbon footprint of the Israeli dairy industry at 1,777,800 t of CO2e. Consequently, this framework highlights areas with significant GHG emissions that require attention and opportunities for national mitigation based on the detailed characteristics of the studied systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.