Abstract

Permeability in porous media has an important role in many engineering applications, which depends mainly on the pore size, distribution, and connectivity of porous media. As the pore structure distribution of coal has a multi-scale fractal dimension characteristic, this study aimed to propose a multi-scale fractal dimension characteristics units model (MFU) to describe the pore structure distribution by analyzing the multi-scale fractal dimension characteristics of coal pore media. Then, a multi-scale fractal permeability model was established based on MFU. The pore structure distribution was obtained by mercury injection porosimetry (MIP) and nuclear magnetic resonance (NMR) experiments. Based on MIP and NMR experimental data, the permeability contribution of different pore diameters were calculated. The results show that the permeability contribution of the micropore was minimal and can be ignored. The permeability contribution of mesopores was about 1–5%, and the permeability contribution of macropores was about 95–99%, which plays a decisive role in the seepage process. The calculated results, based on multi-scale fractal permeability model and the experimental permeability data, are in the same order of magnitude. The permeability prediction based on proposed model is better than classical single fractal permeability model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.