Abstract

We propose a multi-scale modeling framework to investigate the transmission dynamics of cholera. At the population level, we employ a SIR model for the between-host transmission of the disease. At the individual host level, we describe the evolution of the pathogen within the human body. The between-host and within-host dynamics are connected through an environmental equation that characterizes the growth of the pathogen and its interaction with the hosts outside the human body. We put a special emphasis on the within-host dynamics by making a distinction for each individual host. We conduct both mathematical analysis and numerical simulation for our model in order to explore various scenarios associated with cholera transmission and to better understand the complex, multi-scale disease dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.