Abstract

We propose a magneto-mechanically coupled multi-scale model for simulating the curing process of polymers. In the case of magneto-sensitive polymers, micron-size ferromagnetic particles are mixed with a liquid polymeric matrix in the uncured stage. The polymer curing process is a complex process that transforms a fluid to a solid with time. To transfer the constituent parameter information from the micro-scale to the macro-scale for a composite magneto-mechanically coupled polymeric material, an extended Mori–Tanaka semi-analytic homogenization procedure is utilized. The stiffness gaining phenomenon as in the case of a curing process is realized by time-dependent material parameters appearing within the composite piezomagnetic material tensors. Moreover, to compute the volume reduction during curing, a magnetic induction dependent shrinkage model is proposed. Several numerical examples show that the model proposed herein can capture major observable phenomena in the curing process of polymers under magneto-mechanically coupled infinitesimal deformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.