Abstract

Exploring a new multi-responsive pyranone chemosensor capable of sensing copper ions specifically and selectively through colorimetric, UV–Vis absorption and fluorescence methods is of great importance. In this piece of work, a novel pyranone based Schiff base ligand 4-Hydroxy-6-methyl-3-[1-(2-morpholin-4-yl-ethylimino)-ethyl]-pyran-2-one (DM) was synthesized by the condensation of dehydroacetic acid and 4-(2-aminoethyl) morpholine. The structural determination of ligand DM was executed using distinct spectral techniques i.e.,1H NMR, 13C NMR, FT-IR and HR-MS techniques. The reported Schiff base DM showed an immediate colorimetric change from pale yellow to colorless accompanied by a strong change in the UV–Vis absorption band onto the addition of Cu (II) ions. This metal ligand chelation leads a decrease in ICT process. Also the decrease in fluorescence emission intensity of Schiff base DM with Cu (II) ions addition showed its turn-off behavior towards copper ions. Further absorption/ emission titration studies, Job’s plot, HR-MS and 1H NMR titration data designated 2:1 stoichiometric ratio between DM and Cu (II) ions respectively. Density functional theory studies were also performed to authenticate the binding mechanism theoretically. The sensitivity of Schiff base DM towards Cu (II) ions was applicable at every pH conditions and at the same time DM exhibited selectivity towards Cu (II) ions with a negligible interference of other metal ions. DM showed a detection limit of 7.7 nM towards copper ions via fluorescence emission studies. The best part about DM is that it has good stability but showed an instant chemical reversibility when titrated with EDTA solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.