Abstract

This paper presents a multi-product multi-period stochastic program for an integrated blood supply chain that considers red blood cells and platelets while accounting for multi-product interactions, demand uncertainty, blood age information, blood type substitution, and three types of patients. The aim is to minimize the total cost incurred during the collection, production, inventory, and distribution echelons under centralized control. The supply chains for red blood cells and platelets intertwine at the collection and production echelons as collected whole blood can be separated into red blood cells and platelets at the same time. By adapting to a real-world blood supply chain with one blood center, three collection facilities, and five hospitals, we found a cost advantage of the multi-product model over an uncoordinated model where the red blood cell and platelet supply chains are considered separately. Further sensitivity analyses indicated that the cost savings of the multi-product model mainly come from variations in the number of whole blood donors. These findings suggest that healthcare managers are able to see tremendous improvement in cost efficiency by considering red blood cell and platelet supply chains as a whole, especially with more whole blood donations and a higher percentage of whole blood derived platelets pooled for transfusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call