Abstract

SUMMARYIn this study, a control algorithm is proposed and evaluated for a special type of kinematically redundant manipulator. This manipulator is comprised of two mechanisms, macro and micro mechanisms, with distinct acceleration and work space characteristics. A control algorithm is devised to minimize the task completion duration and the overall actuator effort with respect to the conventional manipulator. A general framework multi-priority controller for macro-micro manipulators is introduced by utilizing virtual dynamics, which is introduced in null-space projection to achieve secondary tasks. The proposed controller is evaluated on a simulation model based on a previously constructed macro-micro manipulator for planar laser cutting. Task completion duration and the total actuator effort are investigated and the results are compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call