Abstract

Over the past few years, the devices in Wireless Sensor Networks (WSN) are growing exponentially due to the emergence of many sophisticated applications. This tremendous growth leads to serious security challenges, and the devices of WSN should be protected from various attacks. WSN can be configured dynamically without fixed infrastructure and the devices can be talked with one another in an ad-hoc manner. Due to the dynamic nature of WSN, routing is considered as the challenging task that should be performed efficiently with robust routing mechanism. Even though many routing schemes have been emerged for WSN, they are not well scalable in very large-scale environment. This work introduces multi path routing strategy, and the routing will be selected based on trusted nodes. First, the trusted nodes are identified using trusted metrics of each node in the network. These metrics are calculated based on the threshold value of nodes. Then, secure routing is established by isolating node capturing attacks from the path. The performance of the work is analyzed in terms of packet loss, computational time and throughput. The paper compares the performance with the state-of-the-art routing schemes such as EMBTR (Enhanced Multi Attribute Based Attack Resistance), TSRM (Trust based secure routing model), and TARF (Trust-aware routing framework for WSNs). The outcome of the simulation shows that the proposed scheme outperforms the other state-of-the-work in terms of computational cost, throughput, and delay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.