Abstract
Different mathematical and dynamic methods have been developed addressing the problem of forecasting, with the regression analysis to be one of the most frequently used statistical procedures. Meanwhile, neural networks (NNs) are considered to be well suited in finding accurate solutions in an environment characterised by volatility, noisy, irrelevant or partial information. In this chapter, a simulation study compares the performance of NNs against linear regression analysis is based on multiple combinations (421 in total) of five different factors providing those cases that the NN performs better than the LRM and defining the output bias as the main contributor to the NN outcome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Business Forecasting and Marketing Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.