Abstract

A multi-objective optimization method for thin-walled tube NC bending is presented. Firstly, a half-symmetry 3D elastic-plastic FEM model is established based on the initial design values, applying the dynamic explicit code ABAQUS/Explicit. Secondly, virtual orthogonal arrays are designed to optimize friction coefficients, with minimizing the maximum wall-thinning ratio, the maximum cross section distortion ratio and the maximum height of wrinkling waves as the multi-objectives. Lastly, the mandrel radius is optimized by sequential quadratic programming with approximate regressive models fit from uniform design values in the allowed range. Application is put forward for Ф50×1×100 (tube outside diameter ×tube wall thickness × central line bending radius) and Ф100×1.5×200 aluminum alloy tube bending. It is proved that the forming quality has been improved by the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.