Abstract

In this paper, we present a new multi-objective optimization approach for segmentation of Magnetic Resonance Imaging (MRI) of the human brain. The proposed algorithm not only takes advantages but also solves major drawbacks of two well-known complementary techniques, called fuzzy entropy clustering method and region-based active contour method, using multi-objective particle swarm optimization (MOPSO) approach. In order to obtain accurate segmentation results, firstly, two fitness functions with independent characteristics, compactness and separation, are derived from kernelized fuzzy entropy clustering with local spatial information and bias correction (KFECSB) and a novel adaptive energy weight combined with global and local fitting energy active contour (AWGLAC) model. Then, they are simultaneously optimized to finally produce a set of non-dominated solutions, from which L2-metric method is used to select the best trade-off solution. Our algorithm is both verified and compared with other state-of-the-art methods using simulated MR images and real MR images from the McConnell Brain Imaging Center (BrainWeb) and the Internet Brain Segmentation Repository (IBSR), respectively. The experimental results demonstrate that the proposed technique achieves superior segmentation performance in terms of accuracy and robustness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call