Abstract

One of the main tasks involving the development of a new spacecraft is how to distribute its electronic equipment over its structural panels. This problem is first addressed in the conception phase of the design and is traditionally carried out by a group of system engineers. It is a multidisciplinary task since structural, thermal, dynamics, and integration issues, must all be taken into account simultaneously. Usually, the initial positioning is done based on the engineers’ experience, followed by an analysis stage (thermal, structural, etc.) in which the design performance and constraints are verified. This process takes time and hence, as soon as a good feasible design is found, it is taken as the baseline. This precludes a broad exploration of the conceptual design space, which usually leads to a suboptimal layout design. In this paper the main features of a multi-objective methodology are presented which were developed to automatically find solutions for a three-dimensional layout of equipment in spacecraft. It includes mass, inertia, thermal and subsystem requirements and geometric constraints using a multi-objective approach that combines CAD and optimization tools in an integrated environment. As a case study, the methodology was applied to the layout optimization of the Brazilian Multi-Mission Space Platform (MMP) equipment. The main results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.