Abstract

In this paper, we develop a multi-objective model to optimally control the lead time of a multi-stage assembly system, using genetic algorithms. The multi-stage assembly system is modelled as an open queueing network. It is assumed that the product order arrives according to a Poisson process. In each service station, there is either one or infinite number of servers (machines) with exponentially distributed processing time, in which the service rate (capacity) is controllable. The optimal service control is decided at the beginning of the time horizon. The transport times between the service stations are independent random variables with generalized Erlang distributions. The problem is formulated as a multi-objective optimal control problem that involves four conflicting objective functions. The objective functions are the total operating costs of the system per period (to be minimized), the average lead time (min), the variance of the lead time (min) and the probability that the manufacturing lead time does not exceed a certain threshold (max). Finally, we apply a genetic algorithm with double strings using continuous relaxation based on reference solution updating (GADSCRRSU) to solve this multi-objective problem, using goal attainment formulation. The results are also compared against the results of a discrete-time approximation technique to show the efficiency of the proposed genetic algorithm approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.