Abstract
Feature fatigue (FF) is used to represent the phenomenon of customer's inconsistent satisfaction with products: customers prefer to choose products with more features and capabilities initially, but after having worked with a product, they become frustrated or dissatisfied with the usability problems caused by too many features. To "defeat" FF, it is essential for designers to decide what features should be added when developing a product to make the product attractive enough and not too hard to use at the same time. In this paper, a feature fatigue multi-objective genetic algorithm (FFMOGA) method is reported for solving the feature addition problem. In the proposed method, fitness functions are established based on Bayesian networks, which can represent the uncertain customer preferences and reflect the relationships among features. The computational experiments on a smart phone case show that the FFMOGA approach can find multiple solutions along the Pareto-optimal frontier for designers to select from, and these obtained solutions have good performance in convergence.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.