Abstract

Multi-objective Bayesian optimization (MOBO) is an efficient and robust optimization framework for expensive functions. In this work, we use MOBO to optimize the free parameters of a high-order nonlinear weighted essentially non-oscillatory (WENO) reconstruction scheme to devise a model for implicit large eddy simulations. We concurrently optimize for a low dispersion error and sufficient shock-capturing ability for compressible flows as well as for physically consistent transition occurring in under-resolved flow regions. With our approach, we follow the genealogy of designing implicit sub-grid models. Yet, in contrast to previous works that were limited to incompressible flows, our model is also applicable to compressible flows. Validated results show that the model is able to decrease excessive dissipation in continuous flow regimes, to capture shocks with little dispersive and dissipative errors while achieving a well shaped vortical structures. The proposed framework is general and can be used to design a physically consistent numerical scheme for under-resolved compressible-flow simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.