Abstract

Abstract Countries with high carbon emissions are actively exploring carbon capture, utilization and storage (CCUS) system. CCUS-based CO2 enhanced oil recovery (CO2-EOR) technology is favored for sustainable oilfield development and its contribution to mitigating global warming. In this paper, under the crafts constraints of injection stations and CO2-flooding wells, as well as the flow rate and pressure constraints along pipeline network, a multi-objective mixed integer nonlinear programming (MOMINLP) model is proposed for the optimal operation control of oilfield surface CO2-flooding pipeline network system. The minimum operating costs of pumps, the maximum CO2 injection volume and the minimum demand-injection volume deviation are set as objective functions. The uncertainty of demand CO2 injection volume caused by geological uncertainty is settled by scenario-based stochastic programming method. In addition, the piecewise linearization method and the augmented e-constraint method (AUGMECON) are introduced to deal with the nonlinear constraints and get the Pareto optimal solutions, respectively. Finally, the proposed model is successfully applied to a large-scale looped and branched CO2-flooding pipeline network system in Sinkiang, China with three cases for comparison to verify its applicability and superiority.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.