Abstract
The field of Search-Based Software Engineering (SBSE) has widely utilized Multi-Objective Evolutionary Algorithms (MOEAs) to solve complex software engineering problems. However, the use of such algorithms can be a hard task for the software engineer, mainly due to the significant range of parameter and algorithm choices. To help in this task, the use of Hyper-heuristics is recommended. Hyper-heuristics can select or generate low-level heuristics while optimization algorithms are executed, and thus can be generically applied. Despite their benefits, we find only a few works using hyper-heuristics in the SBSE field. Considering this fact, we describe HITO, a Hyper-heuristic for the Integration and Test Order Problem, to adaptively select search operators while MOEAs are executed using one of the selection methods: Choice Function and Multi-Armed Bandit. The experimental results show that HITO can outperform the traditional MOEAs NSGA-II and MOEA/DD. HITO is also a generic algorithm, since the user does not need to select crossover and mutation operators, nor adjust their parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.