Abstract
Furniture failure generally appears at junctions between wooden parts. Failure prediction is a challenging problem considering the various technologies used for the assembly, the geometric dimensions of the wooden assembled parts and of the assembly components as well as the material properties of the wooden parts. Being able to provide a procedure for failure analysis is of great interest to the furniture industry. This paper proposes a multi-model approach in 3 steps: (i) a simplified global modeling of the whole structure (high loft bed) taking into account the specific geometry of each wooden part (beams or plates), (ii) a three-dimensional local numerical analysis of a through-bolt junction subjected to the mean critical load identified during a series of experimental compression tests to determine the local stresses in such a corner-type junction, and (iii) the application of an ad hoc failure criterion adapted to the anisotropic behavior of wood for failure prediction in through-bolt junctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.