Abstract
Ex situ heart perfusion (ESHP) has proven to be an important and valuable step toward better preservation of donor hearts for heart transplantation. Currently, few ESHP systems allow for a convenient functional and physiological evaluation of the heart. We sought to establish a simple system that provides functional and physiological assessment of the heart during ESHP. The ESHP circuit consists of an oxygenator, a heart-lung machine, a heater-cooler unit, an anesthesia gas blender, and a collection funnel. Female Yorkshire pig hearts (n = 10) had del Nido cardioplegia (4°C) administered, excised, and attached to the perfusion system. Hearts were perfused retrogradely into the aortic root for 2 hours before converting the system to an isovolumic mode or a working mode for further 2 hours. Blood samples were analyzed to measure metabolic parameters. During the isovolumic mode (n = 5), a balloon inserted in the left ventricular (LV) cavity was inflated so that an end-diastolic pressure of 6-8 mmHg was reached. During the working mode (n = 5), perfusion in the aortic root was redirected into left atrium (LA) using a compliance chamber which maintained an LA pressure of 6-8 mmHg. Another compliance chamber was used to provide an afterload of 40-50 mmHg. Hemodynamic and metabolic conditions remained stable and consistent for a period of 4 hours of ESHP in both isovolumic mode (LV developed pressure: 101.0 ± 3.5 vs. 99.7 ± 6.8 mmHg, p = .979, at 2 and 4 hours, respectively) and working mode (LV developed pressure: 91.0 ± 2.6 vs. 90.7 ± 2.5 mmHg, p = .942, at 2 and 4 hours, respectively). The present study proposed a novel ESHP system that enables comprehensive functional and metabolic assessment of large mammalian hearts. This system allowed for stable myocardial function for up to 4 hours of perfusion, which would offer great potential for the development of translational therapeutic protocols to improve dysfunctional donated hearts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.