Abstract

Lower extremity paralysis has become common in recent years, and robots have been developed to help patients recover from it. This paper presents such a robotic system that allows for two working modes, the robot-active mode and human-active mode. The robot is designed to be equipped with magnetorheological (MR) actuators that have the advantages of high torque, fast response, flexible controllability, low power consumption and safety guarantee. The design and characteristics of the MR actuator are introduced. In the robot-active mode, the MR actuator works as a clutch to transfer the torque to the robotic joint safely. In the human-active mode, the MR actuator functions as a brake to provide resistance to help strengthen muscles. The working mode is determined by the human motion intention, which is detected via the skin surface electromyography (EMG) signals. The human-robot interaction torques are estimated using the EMG-driven impedance model. The biomechanical analysis based on AnyBody Modeling System (AMS) is used to help optimization. Then, an adaptive control method is proposed to realize the assist-as-needed (AAN) training strategy, where the robot can switch between these two modes. Experiments are conducted to validate the proposed design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.