Abstract

The head and neck phantom discussed in an accompanying paper (part 1), is imaged with MRI, X-ray CT, PET and ultrasound. MRI scans show a distinct image contrast between the brain compartment and other anatomical regions of the head. The silicone matrix that was used to create a porous brain compartment has a relatively high proton density and a spin–spin relaxation time (T2) that is long enough to provide an MRI signal. While the longitudinal magnetization was found to recover according to a mono-exponential, a bi-exponential decay was observed for the transverse relaxation with a slow T2 relaxation component corresponding to the perfusate and a fast T2 relaxation component corresponding to the silicone. The fraction of the slow T2 relaxation component increases upon perfusion. A dynamic contrast enhanced (DCE) MRI experiment is conducted in which the injection rate of the contrast agent is varied. Parametric DCE maps are created and reveal regional differences in contrast agent kinetics as a result of differences in porosity. The skull, vertebra and the brain compartment are clearly visible on X-ray CT. Dynamic PET scanning has been performed while the carotic arterial input function is monitored by use of a Geiger-Müller counter. Similar regions of perfusion are found in the PET study as in the DCE MRI study. By doping the perfusate with a lipid micelle emulsion, the phantom is applicable for carotic Doppler ultrasound demonstration and validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.