Abstract

Alzheimer's Disease (AD) accounts for the majority of dementia, and Mild Cognitive Impairment (MCI) is the early stage of AD. Early and accurate diagnosis of dementia plays a vital role in more targeted treatments and effectively halting disease progression. However, the clinical diagnosis of dementia requires various examinations, which are expensive and require a high level of expertise from the doctor. In this paper, we proposed a classification method based on multi-modal data including Electroencephalogram (EEG), eye tracking and behavioral data for early diagnosis of AD and MCI. Paradigms with various task difficulties were used to identify different severity of dementia: eye movement task and resting-state EEG tasks were used to detect AD, while eye movement task and delayed match-to-sample task were used to detect MCI. Besides, the effects of different features were compared and suitable EEG channels were selected for the detection. Furthermore, we proposed a data augmentation method to enlarge the dataset, designed an extra ERPNet feature extract layer to extract multi-modal features and used domain-adversarial neural network to improve the performance of MCI diagnosis. We achieved an average accuracy of 88.81% for MCI diagnosis and 100% for AD diagnosis. The results of this paper suggest that our classification method can provide a feasible and affordable way to diagnose dementia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.