Abstract

Lookup table is widely used in automotive industry for the design of engine control units (ECU). Together with a proportional-integral controller, a feed-forward and feedback control scheme is often adopted for automotive engine management system (EMS). Usually, an ECU has a structure of multi-input and single-output (MISO). Therefore, if there are multiple objectives proposed in EMS, there would be corresponding numbers of ECUs that need to be designed. In this situation, huge efforts and time were spent on calibration. In this work, a multi-input and multi-out (MIMO) approach based on model predictive control (MPC) was presented for the automatic cruise system of automotive engine. The results show that the tracking of engine speed command and the regulation of air/fuel ratio (AFR) can be achieved simultaneously under the new scheme. The mean absolute error (MAE) for engine speed control is 0.037, and the MAE for air fuel ratio is 0.069.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.