Abstract

Existing tunnel defect detection methods often lack repeated inspections, limiting longitudinal analysis of defects. To address this, we propose a multi-information fusion approach for continuous defect monitoring. Initially, we utilized the You Only Look Once version 7 (Yolov7) network to identify defects in tunnel lining videos. Subsequently, defect localization is achieved with Super Visual Odometer (SuperVO) algorithm. Lastly, the SuperPoint–SuperGlue Matching Network (SpSg Network) is employed to analyze similarities among defect images. Combining the above information, the repeatability detection of the disease is realized. SuperVO was tested in tunnels of 159 m and 260 m, showcasing enhanced localization accuracy compared to traditional visual odometry methods, with errors measuring below 0.3 m on average and 0.8 m at maximum. The SpSg Network surpassed the depth-feature-based Siamese Network in image matching, achieving a precision of 96.61%, recall of 93.44%, and F1 score of 95%. These findings validate the effectiveness of this approach in the repetitive detection and monitoring of tunnel defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.