Abstract

We used three state-of-the-art machine learning techniques (boosted regression tree, random forest, and support vector machine) to produce a multi-hazard (MHR) map illustrating areas susceptible to flooding, gully erosion, forest fires, and earthquakes in Kohgiluyeh and Boyer-Ahmad Province, Iran. The earthquake hazard map was derived from a probabilistic seismic hazard analysis. The mean decrease Gini (MDG) method was implemented to determine the relative importance of effective factors on the spatial occurrence of each of the four hazards. Area under the curve (AUC) plots, based on a validation dataset, were created for the maps generated using the three algorithms to compare the results. The random forest model had the highest predictive accuracy, with AUC values of 0.994, 0.982, and 0.885 for gully erosion, flooding, and forest fires, respectively. Approximately 41%, 40%, 28%, and 3% of the study area are at risk of forest fires, earthquakes, floods, and gully erosion, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.