Abstract
In this paper we study a multi-grid method for the numerical solution of nonlinear systems of equations arising from the discretization of ill-posed problems, where the special eigensystem structure of the underlying operator equation makes it necessary to use special smoothers. We provide uniform contraction factor estimates and show that a nested multigrid iteration together with an a priori or a posteriori chosen stopping index defines a regularization method for the ill-posed problem, i.e., a stable solution method, that converges to an exact solution of the underlying infinite-dimensional problem as the data noise level goes to zero, with optimal rates under additional regularity conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.