Abstract

With power becoming a major constraint for multiprocessor embedded systems, it is becoming important for designers to characterize and model processor power dissipation. It is critical for these processor power models to be useable across various modeling abstractions in an electronic system level (ESL) design flow, to guide early design decisions. In this paper, we propose a unified processor power modeling methodology for the creation of power models at multiple granularity levels that can be quickly mapped to an ESL design flow. Our experimental results based on applying the proposed methodology on the OpenRISC and MIPS processors demonstrate the usefulness of having multiple power models. The generated models range from very high-level two-state and architectural/instruction set simulator models that can be used in transaction level models, to extremely detailed cycle-accurate models that enable early exploration of power optimization techniques. These models offer a designer tremendous flexibility to trade off estimation accuracy with estimation/simulation effort.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.