Abstract

ObjectiveThe tooth-resin composite interface is frequently associated with failure because of microbial contamination, hydrolytic and collagenolytic degradation. Thus, designing a dentine bonding system (DBS) with an intrinsically antimicrobial polymerisable monomer is of significance especially if it can be used with self-etching primers enabling resistance to degradation of the interface. MethodsExperimental adhesives were developed incorporating eugenyl methacrylate (EgMA) at concentrations of 0,10 or 20 wt%, designated as EgMA0, EgMA10 and EgMA20, respectively, for use as a two-step self-etch DBS with the functional monomer bis[2-(methacryloyloxy) ethyl] phosphate (BMEP) in the primer. The curing, thermal and wettability properties of the adhesives were determined, and hybrid layer formation was characterised by confocal laser scanning microscopy, microtensile bond strengths (µTBS) and nanoleakage by back-scattered SEM. In situ zymography was used to assess MMP inhibitory activity of the BMEP-EgMA DBS. ResultsEgMA in the adhesives lowered the polymerisation exotherm and resulted in higher Tg, without negatively affecting degree of conversion. Water sorption and solubility were significantly lower with higher concentrations of EgMA in the adhesive. The formation of a distinct hybrid layer was evident from confocal images with the different adhesives, whilst EgMA20 yielded the highest µTBS post water storage challenges and lowest nanoleakage after 6 months. The experimental DBS exhibited minimal to no MMP activity at 3 months. SignificanceThe hydrophobic nature of EgMA and high cross-link density exerts considerable benefits in lowering water uptake and polymerisation exotherm. The application of EgMA, adhesives in conjunction with BMEP in a multi-functional self-etching DBS can resist MMP activity, hence, enhance longevity of the dentine-resin composite interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.