Abstract

We develop a model-based methodology for integrating gene-set information with an experimentally-derived gene list. The methodology uses a previously reported sampling model, but takes advantage of natural constraints in the high-dimensional discrete parameter space in order to work from a more structured prior distribution than is currently available. We show how the natural constraints are expressed in terms of linear inequality constraints within a set of binary latent variables. Further, the currently available prior gives low probability to these constraints in complex systems, such as Gene Ontology (GO), thus reducing the efficiency of statistical inference. We develop two computational advances to enable posterior inference within the constrained parameter space: one using integer linear programming for optimization and one using a penalized Markov chain sampler. Numerical experiments demonstrate the utility of the new methodology for a multivariate integration of genomic data with GO or related information systems. Compared to available methods, the proposed multi-functional analyzer covers more reported genes without mis-covering nonreported genes, as demonstrated on genome-wide data from association studies of type 2 diabetes and from RNA interference studies of influenza.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.