Abstract

Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612, and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning (−40, 40) and (−30, 50) mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi-foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8–3.5 mm (1.7–11.7 mm) over a volume spanning (−25, 25) mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in vivo experiments demonstrated the system’s ability to induce blood–brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non-thermal FUS brain therapy and concurrent microbubble cavitation monitoring through the availability of multiple frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.