Abstract

In this paper, a multi-frequency MIMO antenna for 5G and Wi-Fi 6E is presented. The antenna uses a cosine-shape monopole and split-ring resonator (SRR) structure for tri-band radiation, and frequency band expansion is achieved through SRR, folded split-ring resonators (FSRR) and Archimedean spiral metasurfaces for decoupling, with which a combination of surface wave and space wave decoupling is achieved. The Archimedean spiral metasurface unit can achieve space wave decoupling in the tri-band. By adopting the method of combining space wave decoupling and surface wave decoupling, the miniature antenna is achieved. The measured results closely align with the simulated results. Specifically, maintaining a reflection coefficient of −10 dB, the measured results indicate an increase in isolation of 3.5 dB, 36.47 dB, and 6.42 dB for the frequency bands of 3.45–3.55 GHz, 5.7–5.9 GHz, and 6.75–7 GHz, respectively. Additionally, the MIMO antenna demonstrates an average efficiency of approximately 89%, with an average envelope correlation coefficient (ECC) of 0.0025. Furthermore, the antenna’s peak gain increases by 4.3 dB at 3.5 GHz, 3.8 dB at 5.8 GHz, and 1.9 dB at 6.9 GHz upon integrating the metasurface. The proposed method and structure are anticipated to contribute significantly to decoupling in multi-frequency MIMO antennas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.