Abstract
Multi-focus image fusion is always a difficult problem in digital image processing. To achieve efficient integration, we propose a new end-to-end network. This network uses the residual atrous spatial pyramid pooling module to extract multi-level features from the space of different scales and share parameters to ensure the consistency and correspondence of features. We also introduced a disparities attention module for the network which allows for information retention. These two parts can make our method overcome the difficulties of target edge artifacts, small range blur, poor detail capture, and so on. In addition, in order to improve the semantic ambiguity easily caused by unsupervised learning, we also proposed a new multi-focus image fusion dataset with groundtruth for supervised learning. We performed sufficient experiments, and the results show that the network can quickly capture the corresponding features of multi-focus images, and improve the fusion performance with less computation and lower storage cost. Compared with the existing nine fusion methods, our network is superior to other methods in subjective visual evaluation and objective evaluation, reaching a higher level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.