Abstract

Direct-methanol fuel cell (DMFC) systems are comparatively simple, sometimes just requiring a fuel cartridge and a fuel cell stack with appropriate control devices. The key challenge in these systems is the accurate determination and control of the flow rates and the appropriate mixture of methanol and water, and fundamental understanding can be gained by computational fluid dynamics. In this work, a three-dimensional, steady-state, two-phase, multi-component and non-isothermal DMFC model is presented. The model is based on the Eulerian approach, and it can account for gas and liquid transport in porous media subject to mixed wettability, i.e., the simultaneous presence of hydrophilic and hydrophobic pores. Other phenomena considered are variations in surface tension due to water–methanol mixing and the capillary pressure at the gas diffusion layer–channel interface. Another important aspect of DMFC modeling is the transport of methanol and water across the membrane. In this model, non-equilibrium sorption–desorption, diffusion and electro-osmotic drag of both species are included. The DMFC model is validated against experimental measurements, and it is used to study the interaction between volume porosity of the anode gas diffusion layer and the capillary pressure boundary condition at the anode, and how it affects performance and limiting current density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.