Abstract

It is crucial to detect high-severity defects, such as memory leaks that can result in system crashes or severe resource depletion, in order to reduce software development costs and ensure software quality and reliability. The primary cause of high-severity defects is usually resource scheduling errors, and in the program source code, these defects have contextual features that require defect context to confirm their existence. In the context of utilizing machine learning methods for defect automatic confirmation, the single-feature label method cannot achieve high-precision defect confirmation results for high-severity defects. Therefore, a multi-feature fusion defect automatic confirmation method is proposed. The label generation method solves the dimensionality disaster problem caused by multi-feature fusion by fusing features with strong correlations, improving the classifier’s performance. This method extracts node features and basic path features from the program dependency graph and designs high-severity contextual defect confirmation labels combined with contextual features. Finally, an optimized Support Vector Machine is used to train the automatic detection model for high-severity defects. This study uses open-source programs to manually implant defects for high-severity defect confirmation verification. The experimental results show that compared with existing methods, this model significantly improves the efficiency of confirming high-severity defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.