Abstract

Electrochemical metal processing is a process that generates harmful pollution. An important goal often disregarded by researchers is not only the achievement of the best possible quality of electropolished surface, but also minimising the load of metal ions in the wastewater generated in the process. The conducted experiments on the electropolishing of stainless steel in laboratory conditions, varied time, temperature and current density conditions, as well as process bath contamination (ranging from 0 to 6% Fe mass) allowed us to develop a multi-factorial mathematical model. This model offers the possibility of being able to select the process parameters recommended for achieving the desired effects. It takes into account such surface quality parameters as roughness and gloss, process duration and current density that determine power consumption, as well as the weight loss of the electropolished element that influence the rate of contamination in processing baths and wastewater. The study presents the composition of a passive film of stainless steel after the electropolishing process at the initial and final stages of the process bath’s exploitation. The results obtained from XPS tests were then correlated with the results of corrosion tests and resistance to pitting corrosion in the environment of 0.1 M NaCl.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.