Abstract
Abstract Utilizing a range of techniques including multi-band light curves, softness ratio analysis, structure functions, rms spectra, cross-correlation functions, and ratios of spectra from different intervals, we present a comprehensive study of the complex X-ray spectral variability in Seyfert 1 galaxy Ark 120, through re-analyzing its six XMM-Newton observations taken between 2003 and 2014. We find a clear ``softer-when-brighter" trend in the 2--10 keV power-law component over long timescales, with this trend being timescale dependent, as it is much weaker on shorter timescales, similar to that previously detected in NGC 4051. Notably, a rare ``harder-when-brighter" trend is observed during one exposure, indicating dynamic changes in the spectral variability behavior of the power-law component. This exceptional exposure, with the spectral variability indeed marked by a power-law pivoting at an unusually low energy of $\sim$ 2 keV, suggests intricate variations in the thermal Comptonization processes within the corona. Furthermore, when the data below 2 keV are included, we identify that the soft excess component adds significant complexity to the spectral variability, such as evidenced by a transition from ``harder-when-brighter” to ``softer-when-brighter” during another single exposure.Such extra complexity arises because the variability of the soft excess sometimes follows and sometimes does not follow the changes in the power-law component.Our findings underscore the necessity of applying multiple analytic techniques to fully capture the multifaceted spectral variability of AGNs.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.