Abstract

Veratrum nigrum L. (VN) is a well-known herbal medicine and rich in chemical components with multiple pharmacological activities including antihypertensive, anticancer, and antifungal effects. In the current experiment, the quality of VN from different habitats was evaluated based on combinative method of fingerprint, multi-component quantification and chemical pattern recognition. Fifteen batches of VN were collected, and intrinsic chemical composition were identified using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, which is a method for analyzing the similarity between samples, coupled with fingerprint of traditional Chinese medicine. The fingerprint similarity model show that 22 common peaks were selected covering 15 batches of and the similarity > 0.963. The total of 22 joint components were tentatively identified by comparison with standard substances or literature. A ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry method for simultaneous determination of 8 compounds was established to evaluate the contents of raw and processed Veratrum nigrum L. Multivariate analysis was then applied to compare different batches of herbs based on ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry data. All raw and processed samples were classified by partial least squares discriminant analysis based on the 8 analyzed compounds. The findings suggested that veratramine and polydatin with a variable importance for the project (VIP) > 1 were identified as significant constituents, the presence of which can be used to differentiate between raw and processed Veratrum nigrum L. samples. These results indicate that processing methods show important effects on the composition of Veratrum nigrum L..

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.