Abstract

A two-phase mixture model is developed to simulate intense sediment transport covering the bed-load layer and suspended load layer. The proposed model maintains high accuracy as an Eulerian two-phase model but requires low computational cost. The proposed model applies an analytical formula for relative velocity between phases. The dense granular flow rheology is employed to close particle stress economically. The closure of Reynolds stress considers turbulence damping and small-scale fluctuation of fluid–particle interaction and particle collision. A damping function is adopted in eddy viscosity for extra turbulence damping from inter-particle interaction. The optimal exponent of the damping function refers to sediment shape and size. The sediment diffusion includes turbulence diffusion and shear-induced self-diffusion originating from dense sediment. The proposed model is validated by several sets of sheet flow cases (Shields number Θ = 0.44–2.20 and particle Reynolds number Res = 1.6–603.0) and shows a wide applicable range and good accuracy. The small-scale fluctuation and shear-induced self-diffusion improve the computation in the lower sheet flow layer where volumetric sediment concentration is larger than 0.2. Furthermore, the proposed model shows reasonable applicability on the multi-dimensional pipeline scour development. The scour profiles are well predicted and the Brier Skill Score = 0.809. However, the proposed model does not perform the wake characteristic around the pipeline sufficiently, and slight scour difference exists between the simulation and experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.