Abstract
With the improvement of sensor techniques, and the urgent requirement of automatic fault diagnosis technologies, the intelligent perception system on high speed train is more popular than ever before. It records the devices’ state information through a sensor network, and services for further analysis. However, Traditional machine learning algorithms are usually constrained by massive multi-sensor data and knowledge-based feature extraction in fault diagnosis. Therefore, this paper extended fault diagnosis methodology into tensor space to deal with multi-sensor monitoring data and take full use of available information. Moreover, the convolutional neural network (CNN) is used for automatic feature learning and classification without human intervention. The effectiveness and efficiency are validated by dataset of rolling element bearings obtained in lab and real-use case. Three features can be highlighted. First of all, the proposed model showed a good adaptability and high efficiency under various working condition by taking full use of the multi-sensor data. It has powerful ability in accuracy and convergence speed. Secondly, it is not as sensitive to data quantity as other deep learning algorithms do. Such superior characteristic made the model more suitable for practical application, because of the insufficient failure data. At last, it is an intelligent End-to-End model, performing automatic fault diagnosis without manual intervention and suitable for real-use case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.