Abstract

Extending oceanographic data beyond the instrumental period is highly needed to better characterize and understand multi-decadal to centennial natural ocean variability. Here, a stable isotope record at unprecedented temporal resolution (1 to 2 years) from a new marine core retrieved off western North Iceland is presented. We aim to better constrain the variability of subsurface, Atlantic-derived Subpolar Mode Water (SPMW), using near surface-dwelling planktic foraminifera and Arctic Intermediate Water (AIW) mass changes using benthic foraminifera over the last ~165 years. The reconstruction overlaps in time with instrumental observations and a direct comparison reveals that the δ18O record of Neogloboquadrina pachyderma is reliably representing temperature fluctuations in the SPMWs. Trends in the N. pachyderma δ13C record match the measured phosphate concentration in the upper 200 m on the North Icelandic Shelf well. Near surface-dwelling foraminifera trace anthropogenic CO2 in the Iceland Sea by ~ 1950 ± 8, however, a reduced amplitude shift in the Marine Suess effect is identified. We argue that this is caused by a contemporary ongoing increase in marine primary productivity in the upper ocean due to enhanced Greenland’s freshwater discharge that has contributed to a nutrient-driven fertilization since the 1940s/50s (Perner et al., 2019). Multi-decadal variability is detected. We find that the 16-year periodicity evident in SPMW and AIWs based on the δ18O of N. pachyderma and M. barleeanum is a signal of SST anomalies propagated into the Nordic Seas via the Atlantic inflow branches around Iceland. Spectral analyses of the planktic foraminiferal δ13C signal indicate intermittent 30-year cycles that are likely reflecting the ocean response to atmospheric variability, presumably the East Atlantic Pattern. A long-term trend in benthic δ18O suggests that Atlantic-derived waters are expanding their core within the water column from the subsurface into deeper intermediate depths towards the present day. This is a result of increased transport by the North Icelandic Irminger Current to the North Iceland Shelf over the historical era.

Highlights

  • A key problem for reducing the uncertainty in future climate projections is that historical records are too short to test the skill of climate models, raising concerns on our ability to successfully project future change for any given emission scenario

  • Our CTD profile, a Oceanographic changes Northwest of Iceland over the historical time period snapshot in July 2015 conditions, indicates that the calculated δ18Oeq (VPDB) of N. pachyderma occurs beneath the fresh surface layer, at a salinity maximum around 75–125 m (Fig 2)

  • The reason why this frequency is not evident in the classical spectral analysis might be related to the fact that this type of analysis is an average so it might smooth out localised cyclicities that one would see on the other hand in the wavelet spectrum

Read more

Summary

Introduction

A key problem for reducing the uncertainty in future climate projections is that historical records are too short to test the skill of climate models, raising concerns on our ability to successfully project future change for any given emission scenario. In the Northern Seas, which includes the northern North Atlantic, the Nordic Seas, and the Arctic Ocean [3], where modes such as the North Atlantic Oscillation (NAO) [4], and Atlantic Multidecadal Oscillation (AMO) are among the ones that have the strongest impact on observed climate variability [5]. An ongoing question in the community is, if the detected climate variability is an internal mode of the climate system or is externally forced [6,7,8,9]. Evidence for multidecadal variability in records over the last 1 ka indicate that this type of variability may be internal (for example, ocean heat storage and transport), or alternatively linked to the interactions between fluctuations in total solar irradiance and volcanic aerosols [10,11,12,13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call