Abstract

In the field of hydrological modelling, the global and automatic parameter calibration has been a hot issue for many years. Among automatic parameter optimization algorithms, the shuffled complex evolution developed at the University of Arizona (SCE-UA) is the most successful method for stably and robustly locating the global “best” parameter values. Ever since the invention of the SCE-UA, the profession suddenly has a consistent way to calibrate watershed models. However, the computational efficiency of the SCE-UA significantly deteriorates when coping with big data and complex models. For the purpose of solving the efficiency problem, the recently emerging heterogeneous parallel computing (parallel computing by using the multi-core CPU and many-core GPU) was applied in the parallelization and acceleration of the SCE-UA. The original serial and proposed parallel SCE-UA were compared to test the performance based on the Griewank benchmark function. The comparison results indicated that the parallel SCE-UA converged much faster than the serial version and its optimization accuracy was the same as the serial version. It has a promising application prospect in the field of fast hydrological model parameter optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.