Abstract
Bovine tropical theileriosis (BTT) is a haemoprotozoan tick-borne disease that implicates huge losses to livestock in terms of considerable mortality and morbidity in tropical and subtropical regions of the globe. Currently available diagnostic methods have less specificity and sensitivity towards the detection of Theileria species. Therefore, an attempt was made to diagnose Theileria annulata by targeting a multi-copy gene, viz. mitochondrially encoded cytochrome b (MT-CYB) gene via polymerase chain reaction (PCR) in different agro-zones of India. 129 cattle blood samples were collected from major livestock rearing regions of India and processed for both molecular and microscopic techniques. Screening of Giemsa-stained thin blood smears was able to detect 14 samples (10.85%) as positive for T. annulata. However, the MT-CYB gene-based PCR assay detected 107 samples (82.94%) positive for T. annulata out of 129 samples. Furthermore, the MT-CYB gene-based PCR assay was standardized in terms of its sensitivity and specificity. Specificity of PCR assay was evaluated against other common haemoprotozoan parasites of tropical countries viz. Babesia bigemina, Anaplasma marginale and Trypanosoma evansi. The multi-copy MT-CYB gene-based PCR assay provided an optimum level of sensitivity (up to the level of 10 femtogram) and high specificity. Haematological examination (Hb, PCV and TLC) of 113 samples revealed significantly (p < 0.05) decreased Hb and PCV levels in positive animals in comparison with the control group of healthy animals. However, the control group had significantly higher (p < 0.001) TLC levels than the positive group. The MT-CYB gene-based PCR assay was found to be highly sensitive that can accurately detect the occurrence of T. annulata infection in carrier animals which are potential infection sources to healthier populations in naive demographic locations through infected ticks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.