Abstract
The issue addressed in this exposition is the classification of multivariate data collected through different sensors for water quality monitoring. Multivariate data are sequences that have various attributes in every instance of the sequences. A few endeavours exist to address this issue; however, none of them has given full emphasis on continuous dataset. Another solution for this issue is to reduce the instances to a single attribute while losing significant information. Different arrangements address both the multivariate and the sequential part of the data yet give an un-versatile solution. The proposed algorithm is not only able to monitor continuous water quality, but it also produces a better classification model for other continuous datasets as well. Instead of decreasing the attributes of the dataset, we introduce three additional reference indicators which are dependent on the actual attributes. We compare the classification accuracy of our proposed algorithm with standard classification models. The proposed method gives better classification accuracy compared to existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.