Abstract
Although modeling self-attention can significantly reduce computational complexity, human pose estimation performance is still affected by occlusion and background noise, and undifferentiated feature fusion leads to significant information loss. To address these issues, we propose a novel human pose estimation framework called DatPose (deformable convolution and attention for human pose estimation), which combines deformable convolution and self-attention to relieve these issues. Considering that the keypoints of the human body are mostly distributed at the edge of the human body, we adopt the deformable convolution strategy to obtain the low-level feature information of the image. Our proposed method leverages visual cues to capture detailed keypoint information, which we embed into the Transformer encoder to learn the keypoint constraints. More importantly, we designed a multi-channel two-way parallel module with self-attention and convolution fusion to enhance the weight of the keypoints in visual cues. In order to strengthen the implicit relationship of fusion, we attempt to generate keypoint tokens to the visual cues of the fusion module and transformers, respectively. Our experimental results on the COCO and MPII datasets show that performing the keypoint fusion module improves keypoint information. Extensive experiments and visual analysis demonstrate the robustness of our model in complex scenes and our framework outperforms popular lightweight networks in human pose estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.