Abstract
This article proposes an analog neuromorphic system that enhances symmetry, linearity, and endurance by using a high-precision current readout circuit for multi-bit nonvolatile electro-chemical random-access memory (ECRAM). For on-chip training and inference, the system uses activation modules and matrix processing units to manage analog update/read paths and perform precise output sensing with feedback-based current scaling on the ECRAM array. The 250nm CMOS neuromorphic chip was tested with a 32 x 32 ECRAM synaptic array, achieving linear and symmetric updates and accurate read operations. The proposed circuit system updates the 32 x 32 ECRAM across 100 levels, maintaining consistent synaptic weights, and operates with an output error rate of up to 2.59% per column. It consumes 5.9 mW of power excluding the ECRAM array and achieves 97.3% inference accuracy on the MNIST dataset, close to the software-confirmed 97.78%, with only the final layer (64 x 10) mapped to the ECRAM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on biomedical circuits and systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.