Abstract

Substantial evidences suggest that reactive oxygen species participate in the normal aging process and in cancer and neurodegenerative age-related diseases. Parkinson's disease (PD), one of the most common oxidative stress-associated pathology in aging people, is treated with a standard pharmacological protocol consisting in a combined therapy l-dopa plus an inhibitor of dopa-decarboxylase, such as carbidopa. The therapy is well validated for the ability to restoring dopaminergic neurotransmission in PD patients, while l-dopa and carbidopa ability in modulating oxidative stress is currently under discussion.Our aim was to evaluate the impact of l-dopa and carbidopa on several biomarkers of exogenously-induced oxidative stress to validate the overall antioxidant effectiveness of the therapy. For this purpose we used peripheral blood lymphocytes from healthy donors treated in vitro with l-dopa and carbidopa and then challenged by different concentrations of H2O2. Glutathione (GSH, GSSG, GSH/GSSG), malondialdehyde (TBARs), protein carbonyls as well as DNA damage (8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and micronuclei (MN)), modulation was evaluated. Our results show that l-dopa, but not carbidopa, decreases the markers of lipid and protein oxidation and increases the total content of glutathione. Both l-dopa and carbidopa (alone or in combination) are able to counteract the formation of 8-oxodG and to reduce H2O2-induced micronuclei.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.