Abstract

Recommendation systems can interpret personal preferences and recommend the most relevant choices to the benefit of countless users. Attempts to improve the performance of recommendation systems have hence been the focus of much research in an era of information explosion. As users would like to ask about shopping information with their friend in real life and plentiful information concerning items can help to improve the recommendation accuracy, traditional work on recommending based on users' social relationships or the content of item tagged by users fails as recommending process relies on mining a user's historical information as much as possible. This paper proposes a new recommending model incorporating the social relationship and content information of items (SC) based on probabilistic matrix factorization named SC-PMF (Probabilistic Matrix Factorization with Social relationship and Content of items). Meanwhile, we take full advantage of the scalability of probabilistic matrix factorization, which helps to overcome the often encountered problem of data sparsity. Experiments demonstrate that SC-PMF is scalable and outperforms several baselines (PMF, LDA, CTR, SocialMF) for recommending.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.