Abstract

Abstract Often, welding processes used in the industry affect the mechanical properties of materials and quality of a manufactured product. There is, however, an alternative process named Friction Stir Welding (FSW), which is an solid state welding process developed to weld light alloys without compromising their mechanical properties. It is of interest to monitor the performance of FSW process to detect loss of quality. In practice, superficial and internal defects can be found; they can be identified through simple visual inspection and through visual recognition on destructive testing respectively, both procedures represent inspection by attributes. Therefore a multi-attribute control chart is assessed to monitor the process. Commonly, multi-attribute control charts involve high sampling rates to ensure accurate monitoring. In this paper, a multi-attribute control chart is proposed, considering the use of empirical control limits, instead of the theoretical ones, in order to improve its accuracy and lessen the small sample sizes effect. The performance of proposed approaches is analyzed by means of Monte Carlo simulation. The results suggest that the performance of the empirical designs is better than the theoretical ones in all tested cases. Finally, the results of monitoring FSW process data are detailed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.