Abstract

Monensin, an antibacterial commonly used in animal fattening, can enter aquatic ecosystems and harm non-target organisms. Since there are no previous studies about the effects of monensin on amphibians, the aim of the present study was to evaluate the lethal and sublethal toxicity of a commercial formulation of monensin (CFM) through standardized bioassays with embryos and larvae of the amphibian Rhinella arenarum. Oxidative stress (catalase and glutathione S-transferase activities, and reduced glutathione and lipid peroxidation levels), cholinesterasic effect (acetylcholinesterase and butyrylcholinesterase activities) and mutagenicity (micronuclei frequency) biomarkers were evaluated. The CFM produced teratogenic effects, with a teratogenic index of 6.21. Embryos (504 h-LC50: 273.33 µg/L) were more sensitive than larvae, as no significant mortality was observed on larvae exposed up to 3000 µg/L for 504 h. However, oxidative stress, cholinesterasic effect and mutagenicity biomarkers were altered on larvae exposed for 96 h to environmentally relevant concentrations (4, 12 and 20 µg/L of monensin active ingredient). The CFM caused adverse effects on the exposed organisms, primarily on embryos, leading to lethal and sublethal effects, which could impact the wildlife when it reaches aquatic ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call