Abstract

This study is focused on the identification of pollutant sources on black crust (BC) samples from the Monumental Cemetery of Milan (Italy), through a multi-analytical approach based on the determination of stable isotope ratios of carbon, sulphur, and oxygen. Six black crust samples, mainly developed on marble sculptures over a time span of 100–150 years, were analysed.For the first time, δ13C was measured for BC samples: δ13C values of the pulverized samples (from −1.2 to +1.3 ‰) are very close to the values obtained from the carbonate matrix, whereas after the removal of the matrix through acidification, δ13C values of BC samples from Milan range from −27.2 to −22.1 ‰, with no significant variation between samples with different ratios of organic carbon to elemental carbon. In sum, the δ13C values obtained for all BC samples fall within the range of anthropogenic emissions such as vehicle traffic, coal combustion and industrial emissions.δ34S and δ18O values of sulphate from BC samples range from −6.3 to +7.0 ‰ and from +7.6 to +10.5 ‰, respectively. Coupling the analysis of the oxygen isotope ratio with that of sulphur enables a more precise identification of the origin of sulphates: the observed isotopic composition falls in the range typical for anthropogenic emission of sulphur dioxide.Overall, in this study, C, S and O isotopes were combined for the first time to assess pollutant sources on black crust samples: this multi-stable isotope approach allowed to show that the BC formation on monuments from the Monumental Cemetery of Milan mostly results from anthropogenic emissions from fossil fuels combustion by road vehicles and factories, as well as domestic heating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.